二酸化炭素の回収・利用・貯留の技術と市場 | シーエムシー出版 第11章

光触媒を用いた CO2 燃料化/資源化

泉 康雄 千葉大学 大学院理学研究院 <u>vizumi@faculty.chiba-u.jp</u>

本研究の背景

石油、天然ガス等化石燃料や化学原料を不可逆的に消費すれば大気中 CO₂濃度が上 昇する。一方、再生可能エネルギーを利用して CO₂を燃料や有用な化学原料に変換で きれば、新たなカーボンニュートラルサイクルを作ることができ、持続可能社会に向 けての有力なオプションとなる^{1,2)}。太陽光からの光エネルギーは地球に届く光1時 間分だけで、人類が消費する1年分をまかなえるほど膨大であるため、光触媒は持続 可能なオプションとして利用することが期待できる。しかし、光エネルギー利用効率 が低いことや、用途に応じて求めている化合物を得ようとする際に選択性が低い問題 がある。

本章では、筆者の研究室で開発した、用途に応じて求めている化合物を選択して得 られる光触媒について紹介する。光触媒を用いた、CO₂からの主な生成物を図1に示 す。

図 1. 本研究グループによる CO₂ から C_{1~3} 炭化水素および C_{1.2} 含酸素化合物 への自在な持続可能光変換。点線矢印 は開発中。

図 2.¹³CO₂ (2.3 kPa) および H₂ (21.7 kPa)下で Ag-ZrO₂光触媒 (0.100 g) に紫外可視光照射 したときの CO 生成の経時変化³⁾。101.3 kPa = 1 気圧。

2.¹³CO₂から¹³CO を光生成

CO₂は熱力学的にたいへん安定な分子である。そのため、再生可能エネルギーのみ を利用して CO₂還元する際、本当に CO₂ガスが反応して生成物に至っているのか、厳 密な検証が必要である。筆者らは、¹³C を含む ¹³CO₂ガスを利用することで、光生成物 に含まれる炭素が ¹³CO₂由来かを確かめた。¹²CO₂, ¹³CO₂それぞれ1モルの質量は44,45 グラムであるから、質量分析計により区別できる。

¹³CO₂ガスおよび H₂ガスを導入し、光触媒に紫外可視光を照射して光反応試験を行ったところ、銀-酸化ジルコニウム(Ag-ZrO₂)を用いると ¹³CO₂から光触媒 1 g (グ ラム) あたり毎時 0.52 µmol の一酸化炭素 ¹³CO を定常的に光還元した(図 2) ³⁻⁵。

半導体である ZrO_2 内部で、光照射により酸素原子の 2p 電子が周辺の Zr 原子の 4d 空軌道にまで励起されるエネルギー(5.0 eV; 1 eV は 1.602×10^{-19} J) は波長 248 nm に相当する。照射光の波長を変えた光反応試験や発光観測により、 ZrO_2 が紫外光を吸収し、 ZrO_2 内部でこの電荷分離が起きることが発端となって CO_2 光還元作用が起きたことが示された。同様に Au-ZrO₂光触媒でも ¹³CO₂から ¹³CO 光生成を示した⁹。

3.¹³CO₂から¹³CH₄を光生成

2項で生成した CO は燃料というより化学原料である。より持続可能社会に向けた CO₂光燃料化として、多電子還元を進める光触媒についても研究を進めたところ、ニッケル–酸化ジルコニウム (Ni–ZrO₂)を用いると、¹³CO₂から高選択的に ¹³CH₄を光生 成した (図 3)^{4,7}。¹³CH₄の生成速度は光触媒 1g 当たり毎時 0.98 mmol に達し、世界 屈指の高活性 CO₂還元用光触媒と言える。反応開始 24 h 経過後に活性が低下してい るのは失活ではなく、供給 CO₂ガスが消費されて無くなったため(図 3 右、上側の点 線が初期供給量)である。

図 3.¹³CO₂ (2.3 kPa) および H₂ (21.7 kPa)下で Ni-ZrO₂ 光触媒 (0.020 g) に紫外 可視光照射したときの CH₄ 生成の経時変化⁷⁾。

このとき供給 ¹³CO₂ ガスの同位体純度(99.0%)に対して、生成メタン(¹³CH₄+ ¹²CH₄) 中の ¹³CH₄の割合は 92.5~98.0%となり、¹³C の比率が一致しなかった。2 項の Ag-ZrO₂ 光触媒でも同様の現象が見られており、原因として ZrO₂ 表面に強い化学吸着サイト があり、そこに空気中から吸着した ¹²CO₂の関与が強く示唆された。そのサイトには 光触媒の前処理後も ¹²CO₂が残っており、それが弱い吸着サイトよりも優先してメタ ン生成に至ったために、生成メタンの ¹³C 純度が反応ガス中の純度よりも低くなった と考えられた。

4.¹³CO₂から¹³C₂H₆および¹³C₃H₈を光生成

3 項で紹介した CO₂を光 CH₄化する Ni–ZrO₂光触媒の持続可能な適用の可能性を模 索してきたが、いくつかの企業との話でネックとなったのはコストであり、比較的安 価な CH₄を光触媒で生成しても採算がとれない、という点であった。すなわち、CO および CH₄の価格はキログラムあたり 0.06~0.18 米ドルであり、持続可能性を目指し た技術/手法が経済的に成り立つことも考慮する必要がある。分子内に含まれる炭素 数 2 (C₂) および 3 (C₃)の炭化水素であればキログラムあたり 0.9~8 米ドルと 10~100 倍の価格になり、持続可能社会での C₂₃ 合成法の適用が現実味を帯びてくる。

Co-ZrO₂光触媒を水素ガス中で還元処理をしてから、H₂ガス共存下で CO₂を還元する光反応試験を行った。使用した光源はキセノンアーク灯で、太陽光の波長分布に似ている。以下、x K (ケルビン)で H₂中還元処理した光触媒を Co-ZrO₂-xR のように示す。

Co (7.5 重量%)–ZrO₂-823R が最も高活性で、メタン (¹³CH₄, ¹²CH₄)、¹³CO、エタン (¹³C₂H₆)、およびプロパン (¹³C₃H₈)を生成した (図 4)。経時変化をみると、¹³CO が反 応初期 5 時間まで生成するが、それ以降は ¹³C₁₋₃パラフィン (C_nH_{2n+2}で表せる化合物 のこと)生成が主となった (図 4)。2,3 項と同様に、¹²CH₄は、¹³CO₂試薬中の同位体 不純物の ¹²CO₂ のモル比 (1%)から予測されるより有意に多く生成した⁸⁾。

図4.¹³CO₂ (2.3 kPa) およびH₂ (21.7 kPa)下でCo (7.5 重量%)-ZrO₂-823R 光触媒 (0.020 g) に紫外可視光照射したときの¹³CH₄, ¹²CH₄, ¹³CO, ¹³C₂H₆, ¹³C₃H₈ 生成の経時変化⁸⁾。

ZrO₂のバンドギャップは 5.0 eV であり、価電子帯にある電子を電導体にまで励起 するためには波長が 248 nm 以下の紫外光が必要となる。ここで Co-ZrO₂-823R への照 射光を可視光のみにした場合でも、活性は低下するものの ¹³CH₄, ¹²CO, ¹³C₂H₆, ¹³C₃H₈ 生成比率は紫外可視光を照射した場合と変わらなかった。このことから、Co-ZrO₂光触媒の CO₂光還元作用には ZrO₂表面の酸素欠陥 (V₀**)サイトが関わっており、 たとえば可視光のエネルギーに対応する、価電子帯から V₀**サイトの不純物準位への 電子遷移、あるいは V₀**サイトの不純物準位から電導帯への電子遷移も有効な可能性 がある。

5.¹³COから¹³C₂H₄および¹³C₃H₆を光生成

4項で¹³CO₂光還元反応に最も高活性だった Co (7.5 重量%)-ZrO₂-823R を用いて、 H₂ガス共存下¹³CO 光還元反応を行った。その結果、主生成物の¹³CH₄ (67 モル%) に 次いで¹³C₂H₄が生成した (24 モル%)。この傾向は反応初期 5 時間まで見られたが、そ の後は¹³C₂H₆が生成するようになった。つまり反応が逐次的に進行しており、反応初 期には、CH₂中間種から C₂H₄が生成し、次いで C₂H₆へと順次、水素化されていった と考えられる。

光生成物は¹³CH₄, ¹²CH₄, エチレン (¹³C₂H₄), ¹³C₂H₆, ¹³C₃H₈だった。¹³CO₂からの光触 媒還元での生成物と比べて、オレフィン (C_nH_{2n}で表せる化合物のこと。¹³C₂H₄では n =2) が生成するようになっただけでなく他の生成物の比も異なっており、¹³CO₂および ¹³CO からの光触媒還元反応それぞれが共通の反応経路を経由するというよりも、CO を優先して光活性化している可能性が示唆された。

図 5.¹³CO (2.3 kPa) および H₂ (2.3 kPa)下で Co (7.5 重量%)–ZrO₂-973R 光触媒 (0.020 g) に紫 外可視光照射したときの ¹³CO 消費および ¹³CH₄, ¹²CH₄, ¹³C₂H₄, ¹³C₂H₆, ¹³C₃H₆, ¹³C₃H₈ 生成の経 時変化⁸⁾。

さらに還元温度を上げて、Coサイトを全て金属状 Co⁰とした Co-ZrO₂-973R 光触媒

を用いて ¹³CO 光還元反応を行ったところ(図 5)、¹³C₂H₄ (61 モル%)およびプロピレン (¹³C₃H₆, 8.6 モル%)が ¹³CH₄ (25 モル%)より多く生成し、主生成物となった。¹³C₂H₄の触媒 1 g 当たり毎時の生成物質量 (5.2 ± 0.5 µmol h⁻¹ g_{cat}⁻¹)および選択性 (61 モル%)は、2023 年以降の報告中での値 (12~68 µmol h⁻¹ g_{cat}⁻¹, 11~86 モル%)と同程度だった⁸。一方、CO および CO₂からの光触媒的な C₃H₆生成 (0.74 µmol h⁻¹ g_{cat}⁻¹)はこれまでほとんど報告例がない。逐次反応の 1 段階めで ¹³C₂H₄を生成し、次いで ¹³C₂H₆を生成、3 段階めで ¹³C₃H₆および ¹³C₃H₈を生成したと考えられる。X 線吸収微細構造スペクトルにより分析したところ、CO 光還元反応条件にて Co (7.5 重量%)–ZrO₂-973R中の Co 種は金属状 Co⁰ 種となっていることが示された。

図 4,5 で、試験に用いた ¹³CO₂および ¹³CO ガスの同位体純度は 99%だが、全 CH₄ 生成に対し ¹²CH₄の割合は ¹³CO₂からは 4.5~12%であり、 ¹³CO からは 6.7~18%となっ た。これは ¹³CO₂交換反応速度解析や X 線光電子分光の結果を基にすると、ZrO₂表面 に存在する酸素欠陥サイトに空気中から吸着した ¹²CO₂ から光触媒反応試験中に ¹²CH₄が生成したため、と考えられる。酸素欠陥サイトは気相にある ¹³CO₂および ¹³CO と吸着平衡にあり、光反応試験中に ¹³CH₄, ¹²CH₄いずれも定常的に生成したというこ とは V₀··サイトは CO₂還元反応経路に含まれ、CO₂還元の活性サイト(のひとつ) と して働いていると思われる。

6.¹³CO₂とH₂Oから¹³CH₄、¹³C₂H₆および¹³C₃H₈を光生成

2~5 項では、再生可能エネルギーを用いて H_2O から得た H_2 、あるいは既存の産業 で現在、余っている H_2 を用いて、 CO_2 を還元する光触媒について紹介した。より直接 のステップとして、 H_2O を CO_2 の還元剤として直接用いる光還元試験を行った。水蒸 気を用いる実験では気相に生成した O_2 が熱力学的に有利な H_2O へと再び還元されて しまうため、液体の H_2O を用いた。

図6.CO₂ (95 kPa) およびH₂O (70 mL)下でCo (7.5 重量%)-ZrO₂-823R (3.5 mg; A) および -973R (16 mg; B) に紫外可視光照射したときの CO, CH₄, C₂H₆, C₃H₈ 生成の経時変化⁸)。

C₂H₆および C₃H₈が 2.0~2.7 µmol h⁻¹ g_{ca}⁻¹の速度で 48 h 定常生成し (図 6)、Co-

ZrO₂-823Rの方が、若干高活性だった(図 6(A))。H₂を還元剤に用いたとき(図 5)の60 mol%のC₂₃炭化水素生成速度となり、O₂も66 μmol h⁻¹ g_{cat}⁻¹以上の速度で生成した。

液体の H₂O を用いたときに、H₂を還元剤に用いる場合と比べて C_{2,3}炭化水素の生成 比が CH₄ (31~60 mol%) と比べて大きくなる理由として、炭化水素中間種と H₂O が Co⁰ 表面に競争吸着するのに対して、H₂を還元剤とした場合には H が Co⁰表面に吸着しや すいため、 CH₄ が主生成物となり、 C_{2,3}炭化水素は 1.4~1.8 mol%となった (図 4)。 H₂ および H₂O を還元剤にした場合いずれでも、 図 6(A)のようにして CO₂が C_{2,3}パラフ ィンへ、また CO が C₃H₆を生成する (図 5) ことはこれまでほとんど報告されていな い。

7. 密度汎関数計算による CO2の光燃料化/資源化反応経路追跡

3 節の Ni-ZrO₂ 光触媒による、CO₂から CH₄への反応経路についての密度汎関数理 論(DFT)計算は以前紹介した^{4,9}。ここでは 4,5 節の CO₂の CH₄および C₂H₆、CO の CH₄および C₂H₄への競合反応経路についての DFT 計算を紹介する⁸。

 CO_2 は V_0 ^{••} サイトに吸着した (図 7A(a))。 H 種 が供給されると吸着 CO_2 は活性 化エネルギー (E_{act}) 1.3 eV で OCOH 種に変換された ((b)). V_0 ^{••} サイトが Co^0 ナノ粒 子に近接している場合、OCOH の O 原子が V_0 ^{••} サイトを埋め、COH 部分が 金属状 Co^0 表面原子上に $E_{act} = 0.28$ eV でホップした ((c))。ZrO₂表面上に Co ナノ粒子は V_0 ^{••} サイトよりも数的に多く分布しており、(b)の状況は十分ありうると思われる。また、 コバルトのフェルミ準位 (真空準位から仕事関数 5.0 eV 分だけ安定なエネルギー位置) は V_0 ^{••} サイトのエネルギーより安定なため、Co ナノ粒子の近傍に V_0 ^{••} サイトを形 成しやすくする効果もある。

CH₄生成経路(図 7A(a)~(e))では(a)から(b)への E_{act} が最大だった。 C_2H_6 生成には CH₃のカップリング($E_{act} = 1.0 \text{ eV}$; (d))ではなく、図 7A'のように CH₂のカップリン グを経るエテン経路を経る($E_{act} = 0.70 \text{ eV}$)と思われる。

CO から C₂H₄生成経路も DFT 計算により調べた。CO は ZrO₂表面ではなく Co⁰ サ イトに吸着エネルギー (E_{ads}) 2.23 eV で吸着した(図 7B(b))。CH₄ に至るメチル経路で は CH₃ が水素化されて CH₄ に至る経路が律速的だった (0.75 eV;図 7B 右)。これに 対して、CH₂ が重合するエテン経路では重合の E_{act} が 0.75 eV を下回り (0.70 eV; (e), (f)、実験で 0~4 h で ¹³C₂H₄ および ¹³C₃H₆ を生成したことを理論的に支持した (図 2)。

図7. 六方最密(010) Co₁₉クラスターと単斜晶系 ZrO₂ (111) 表面 との複合系に (A) CO₂ と H₂ および (B) CO と H₂を導入したときの反応経路図。メチル経路の他に(A') および (B) に競合するエテン経路も示した。

8. まとめと展望

光触媒を CO_2 還元の長所は、シンプルな反応装置で炭化水素やアルコール等含酸素 化合物を得られるところにある。太陽電池と電極触媒を組み合わせたシステムとを組 み合わせたシステムと比べて、簡便で済む。本章で紹介した、光触媒を用いた C_2H_6 , C_3H_8 は H_2 ガスかあるいは H_2O (液体) をシステムに供給できればよく、十分に持続可 能な用途開発の可能性があると思われる。あるいは二段階式の光触媒として一旦 CO_2 を CO へ還元してから H_2 ガスかあるいは H_2O (液体)を供給して C_2H_4 , C_3H_6 生成しても 十分に持続可能になると考えられる。

コスト的には Ag, Au を用いた光触媒から、Ni, Co を用いた光触媒を開発した。同時に、 C_2H_6 , C_3H_8 , C_2H_4 , C_3H_6 を選択光生成する条件を見つけ、その高速化を試みた。 第一周期遷移金属ではさらに安価な Fe を用いた光触媒も現在開発中である¹⁰⁾。本章で紹介した生成物に加え、現代の化学産業においては、CO₂ からのメタノール (CH₃OH)、アセトアルデヒド(CH₃CHO)、エタノール(C₂H₅OH)、酢酸(CH₃CO₂H)、 ギ酸メチル(HCO(OCH₃))(図 1)の光選択合成も魅力的で、企業からの照会も多い。 目的含酸素化合物を選択光合成する、水溶液中を含めた光触媒反応の開発研究を進めている。

文献

- (1) Y. Izumi, Coord. Chem. Rev. 257, 171–186 (2013).
- (2) Y. Izumi, ACS Books "Advances in CO₂ Capture, Sequestration, and Conversion", F. Jin, L.-N. He, and Y. H. Hu, Eds., ACS Symposium Series; ACS Publications, 2015; Volume 1194, Chapter 1, pp 1–46.
- (3) H. Zhang, T. Itoi, T. Konishi, Y. Izumi, J. Am. Chem. Soc. 141(15), 6292–6301 (2019).
- (4) 泉 康雄、メタネーションとグリーン水素の最新動向、関根 泰監修、第2章3節、シーエムシー出版、2023.
- (5)泉康雄、脱石油に向けた CO2資源化技術 化学的・生物学的利用法を中心に、湯川英明監修、第 23章、シーエムシー出版、2020.
- (6) H. Zhang, T. Itoi, K. Niki, T. Konishi, and Y. Izumi, Catal. Today 356, 544–556 (2020).
- (7) H. Zhang, T. Itoi, T. Konishi, Y. Izumi, Angew. Chem. Int. Ed. 60(16), 9045–9054. (2021)
- (8) T. Loumissi, R. Ishii, K. Hara, T. Oyumi, I. Abe, C. Li, H. Zhang, R. Hirayama, K. Niki, T. Itoi, Y. Izumi, *Angew. Chem. Int. Ed.* **63**, e202412090 (2024).
- (9) K. Hara, M. Nozaki, T. Hirayama, R. Ishii, K. Niki, Y. Izumi, J. Phys. Chem. C 127(4), 1776–1788 (2023).
- (10) T. Oyumi, I. Abe, M. Sasaki, and Y. Izumi, to be submitted very soon to Chem. Commun.

著者

泉 康雄 千葉大学 大学院理学研究院 教授 千葉市稲毛区弥生町1の33 Phone 043-290-3696 FAX 043-290-2783 E-mail yizumi@faculty.chiba-u.jp